A slow pushed front in a Lotka-Volterra competition model

نویسندگان

  • Matt Holzer
  • Arnd Scheel
چکیده

We study invasion speeds in the Lotka-Volterra competition model when the rate of diffusion of one species is small. Our main result is the construction of the selected front and a rigorous asymptotic approximation of its propagation speed, valid to second order. We use techniques from geometric singular perturbation theory and geometric desingularization. The main challenge arises from the slow passage through a saddle-node bifurcation. From a perspective of linear versus nonlinear speed selection, this front provides an interesting example as the propagation speed is slower than the linear spreading speed. However, our front shares many characteristics with pushed fronts that arise when the influence of nonlinearity leads to faster than linear speeds of propagation. We show that this is a result of the linear spreading speed arising as a simple pole of the resolvent instead of as a branch pole. Using the pointwise Green’s function, we show that this pole poses no a priori obstacle to marginal stability of the nonlinear traveling front, thus explaining how nonlinear systems can exhibit slower spreading that their linearization in a robust fashion. MSC numbers: 35C07, 35K57, 34E99

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analysis on The Lotka-Volterra Food Chain Model: Stability

The food chain refers to a natural system by which energy is transmitted from one organism to another. In fact, a food chain consists of producers, consumers and decomposition. Presence of complex food web increase the stability of the ecosystem. Classical food chain theory arises from Lotka-Volterra model. In the present paper, the dynamics behavior of three level food chain is studied. A syst...

متن کامل

Permanency and Asymptotic Behavior of The Generalized Lotka-Volterra Food Chain System

In the present paper a generalized Lotka-Volterra food chain system has been studied and also its dynamic behavior such as locally asymptotic stability has been analyzed in case of existing interspecies competition. Furthermore, it has been shown that the said system is permanent (in the sense of boundedness and uniformly persistent). Finally, it is proved that the nontrivial equilibrium point...

متن کامل

The Efficiency of Harvested Factor; Lotka-Volterra Predator-Prey Model

   Scientists are interested in find out “how to use living resources without damaging the ecosystem at the same time?” from nineteen century because the living resources are limited. Thus, the harvested rate is used as the control parameters. Moreover, the study of harvested population dynamics is more realistic.    In the present paper, some predator-prey models in which two ecologically inte...

متن کامل

Stability and Traveling Fronts in Lotka-Volterra Competition Models with Stage Structure

I will discuss a delay differential equation model for the interaction between two species the adult members of which are in competition. The competitive effects are of the Lotka Volterra kind, and in the absence of competition it is assumed that each species evolves according to the predictions of a simple age-structured model which reduces to a single equation for the total adult population. ...

متن کامل

Environmental Fluctuations and Their Consequences for the Evolution of Phenotypic Diversity

An essential aspect of the current theory of adaptive speciation is the maintenance of phenotypic variation and the evolution of stationary stable phenotypic diversity, a phenomenon known as evolutionary branching. Theoretical and empirical evidence suggest that phenotypic variation can be maintained by favoring rare phenotypes, for example, through frequency-dependent selection. However, even ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012